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Abstract

In this paper a theoretical solution for two normally intersecting cylindrical shells subjected to transverse moment on
the branch pipe is presented, which based on thin shell theory. The accurate shell equations, boundary conditions and
calculating methods are adopted so that the solution presented can be applicable up to d/D<0.8 and
A=d/ (DT)I/ 2<8. The presented results are in very good agreement with experimental and numerical results for
ORNL-1 Model. They are also in agreement with the results obtained by WRC Bulletin 297 when d/D is small.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Two intersecting cylindrical shells subjected to internal pressure and external moments are of common
occurrence in pressure vessel and piping industry. The highest stress intensity often occurs in the vicinity of
junction, which is a complicated space curve when the diameter ratio, d/D, of the branch pipe relative to the
main shell increases. This topic has attracted many researchers’ attention due to its importance since 1960s
(see Reidelbach, 1961; Eringen et al., 1965, 1969; Eringen and Suhubi, 1965; Van Dyke, 1965, 1967; Qian
et al., 1965; Yamamoto et al., 1969; Hansberry and Jones, 1969; Lekerkerker, 1972; Steele and Steele, 1983).
In order to evaluate the significant local stresses in cylindrical shells due to external moments on branch
pipes, a thin shell theoretical solution were presented by Bijlaard (1954, 1955a,b). The mathematical model
adopted by Bijlaard is a cylindrical shell without branch pipe subjected to a local loading (force or moment)
in a square region and his solutions are applied by Wichman et al. (1965) to WRC Bulletin No. 107, which
is used by design analysts since 1965. Steele and Steele (1983) and Khathlan (1986) presented an approx-
imate analytical solution of two normally intersecting cylindrical shells based on shallow shell theory. The
design method and tabular data obtained by Steele’s program FAST2 were presented for designers in WRC
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Bulletin No. 297 by Mershon et al. (1984) as a supplement to WRC Bulletin No. 107. WRC Bulletin 297
provides data for the diameter ratio p, = d/D up to approximately 0.5 and includes the effects of nozzle
thickness. Moffat (1985), Moffat et al. (1991) obtained numerical solutions and developed design methods
based on 3-D FEM and experimental results. The limitations of application of the design method in BS 806
are S<D/T<70 and d/D<t/T<1, where ¢t and T denote the thicknesses of nozzle and cylinder,
respectively. Although researchers and designers have expanded the great efforts to overcome the significant
difficulties on mathematics and analysis method, the design procedures for branch junctions are still in need
of improvement.

The authors of the present paper, Xue et al. (1991, 1995a,b, 1996, 1999, 2000) and Deng et al. (1991)
developed a thin shell theoretical method for two orthogonally intersecting cylindrical shells with large d/D
ratio. The intersecting shells subjected to internal pressure and run pipe moments were investigated by Xue
et al. (1995b, 1996) and Xue et al. (1999, 2000), respectively. Comparing with analytical solutions by
previous researchers, the four aspects in the present theoretical solution are improved as follows: (1) the
modified Morley’s equation, which is applicable to the cases A = d/(DT )1/ > 1 with the accuracy order
O(T/R), is adopted instead of Donnell’s shallow shell equation; (2) five coordinate systems in three spaces
(two-dimensional cylindrical surfaces of main shell and branch pipe and three-dimensional space) and the
accurate expressions of the intersecting curve are used instead of approximate expressions, which bring
about significant error when d/D > 0.3; (3) the accurate continuity conditions for forces, moments, dis-
placements and rotations at the intersection curve of the two cylinders are adopted instead of approximate
continuity conditions; (4) the great mathematical difficulties coursed by the accurate but very complicated
formulations are overcome. As a new progress of theoretical solution and design criteria research developed
by the authors, the stress analysis based on the theory of thin shell is carried out for cylindrical shells with
normally intersecting nozzles subjected to external branch pipe moments.

2. Mathematical model

Two intersecting cylindrical shells subjected to external branch pipe moments, i.e., out-of plane moment
M,;, in-plane moment M,, and torsion moment M.,, and five coordinate systems, i.e., main coordinate
system, (&, ¢), and polar coordinates, (o, 5), on developed cylindrical shell surface, (6, ¢) on nozzle surface,
global Cartesian coordinates (x, y,z) and circular cylindrical coordinates (p, 8, z) in 3-D space, adopted in
this paper are shown in Fig. 1, where I" denote the intersecting curve. The cantilever main shell is supported
at one end with the following boundary conditions:

I: =0, u,=0, u, =0, M;=0 atx=—L (L>R) (1)

Each of the three load cases can be considered as the superposition of some basic categories symmetrical or
antisymmetrical about # = 0 and 6 = n/2. As an example, the loading case of out-of plane moment M,y,
which causes the most serious stress concentration, can be considered as the superposition of the following
two categories. That is, category (a): main cylindrical shell with branch pipe simple supported at the two
ends and subjected to out-plane branch pipe moment M,, as shown in Fig. 2(a), which is antisymmetric
about § =0 and symmetric about 6 = nt/2; and category (b): main shell subjected to torsion moments,
M,,/2, at the two ends as shown in Fig. 2(b), which is antisymmetric about both 6§ =0 and 6 = x/2.
Because the solution of category (b) has been given by Xue et al. (1999, 2000), in the present paper, we pay
our attention to solve the category (a), i.e., simple supported main shell subjected to branch moment.
The thin shell theoretical solution for the main shell with cutout, I', on which moment M,; is applied, is
obtained by superposing the particular solution on the homogeneous solution. The double Fourier series
solution of Timoshenko’s equations (1959) in the coordinates (&, ¢) is taken as a particular solution and the
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Fig. 1. Calculated model and five coordinate systems.
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Fig. 2. Superposing two basic categories into M,, load case: (a) simply supported main shell subjected to branch moment M,,; (b) the
main shell subjected to torsion moment M,,/2 at the two ends; (c) M,, load case.

Xue et al.’s solution (1999, 2000) in the polar coordinates («, ), as the homogeneous solution based on the
modified Morley (1959) equation shown in Xue et al. (2000) instead of the Donnell shallow shell equation.
The displacement function solution for the nozzle with a nonplanar boundary curve, I', is obtained on the
basis of the Goldenveizer equation (1961) in the coordinates (0, () instead of Timoshenko equation. The
boundary general forces and displacements of both main shell and branch pipe at the intersecting curve, I,
are all transformed into global coordinate system, (p, 0,z), and expanded in Fourier series of 0. Then the
unknown constants in general solutions of both main shell and branch pipe could be solved by the con-
tinuity conditions of general forces and displacements.

3. The theoretical solution of cylindrical shell with cut-out subjected to out-of plane branch pipe moment

The general solution of this problem is divided into the following two parts: (1) a particular solution,
which is in equilibrium with M, but does not satisfy the boundary conditions at the cut-out; (2) general
solution of the homogeneous equation of cylindrical shell. The sum of the two parts with some integral
constants becomes the general solution of this problem and the unknown constants could be determined by
the boundary conditions at the edge of the cut-out.
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3.1. A particular solution in equilibrium with M,

A thin shell theoretical solution for a simply supported cylindrical shell subjected to a vertical force
system ¢, distributed over a central square region in the developed surface (&, ¢), defined by || <c¢/R,
|| < c/R, is taken as a particular solution of the problem. The vertical force system in the region, ¢, is
distributed linearly in ¢ direction and uniformly in ¢, as shown in Fig. 3. The vertical force system, ¢., is
statically equivalent to M. '

The Timoshenko equations in coordinates (£, ¢) for cylindrical shell subjected to arbitrary distributed
load is adopted as follows:

0? +1—v ? 1+v &u, +v6un_ R* (1 —?) (22)
02 2 092 )T T2 B oE T Tk
L4y @ [l-v® & d s R(1—)
T st | T e g a1 = = 20)
Ou; 0 2 @ @ 222y, 2(1 —v’)
’cBéJr[l_a((z_v)a*z g7 ) |t + 1@V Er I (20)
where ¢ = x/R, a* = T?/(12R?), V?* = 242 = E is Young’s modulus, v is Poisson’s ratio, ¢, ¢, and g, are

the distributed loads applied on the shell

In view of the deformation field symmetric with respect to the plane ¢ = 0 and antisymmetric with re-
spect to the plane ¢ = 0,7, Eqs. (2a—c) with simple supported boundary conditions at ¢ = +L/R can be
solved by expanding the displacements and external load in double infinite Fourier series as follows:

q:=0, q,= Z qun cos(me) sin(2,&'), Z qun sin(me) sin(/4,¢&") (3a,b,c)
m=0 n=
= Z Uy sin(me) cos(7,&),  u, Z Z un COS(me) sin(4,&') (4a,b)
m=1 n=1 m=0 n=1
wy =Y > Wysin(me) sin(i,¢) (4c)
m=1 n=1
where 1, = 2”22) ;n=1,2,..;&=(x+L)/R

The vertical force system and its radial and tangential components are:

a2 1 <p/V2 0l <po/V2 .
q-(&, 0) = , o= —¢:5InQ s
0, €] > po/V2 or |¢| > po/ V2 (5)
qHZqZCOSqD

where p, = r/R, from the equivalence of ¢.-system to M.,

! Reference to Bijlaard (1955b) a simply supported cylindrical shell is subjected to distributed linearly radial force system, g,, whose
resultants include not only moment, M., but also force, F;. Therefore, in order to raise accuracy of the solutions in the present paper
the shell is subjected to vertical force system, ¢., instead of radial force system, g,, because the latter may cause a significant error when
the diameter ratio d/D is not small.
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Fig. 3. The analytic model of particular solution: (a) the distributed force system ¢, equivalent to M,,; (b) the domain distributed by
force system g, .

My . Po Po Po )
= sin— — —= cos—= 6
1=i/ (5~ ls )
Then the coefficients in Fourier series Eq. (3b,c) are
22 aR po/V2  po/V2 ) )
_iq_/ / (psin ¢sin 4,¢)déde, m=20
4% = T pol Jo 0 (7a)
mn 42 gR po/VZ  po/V2
__—/ / (psinpcosmesin A,E)dédp, m =1
T poL Jo 0
4v20R Po/V2  ppo/V2
B Vg / / (pcos psinmesin 7,6)dédp, m>1 (7b)
ool Jo 0

Substituting Egs. (3) and (4) into (2a—c), the coefficients in Fourier series (4a—c) can be solved from the
following system of linear algebraic equations:

1-— 1
I+v, l—v, 2092 2 _ RV
( 2A,,m> U + < 3 )Vm,, +m[l +a* (X, + m*)|W,, = 7 dm (8b)
) 2 ) 2 20 4 2 2 4 R (1) 3)
VA Upn +m[l + a* (2 = V)4, + m* )|V + [1 + a” (m* + 22 m” + 1)) | Wy = i q%) (8c)

The particular solution for resultant forces and moments could be obtained from displacements by
means of geometric and elastic relations (see Timoshenko and Woinowsky-Krieger, 1959). The general
displacements and forces at the closed curve, I', can be expressed by substituting the values of &, ¢:

¢=<¢r=pycost, ¢=op= Sinil(po sin 0) (9a,b)

into Egs. (4a—c) and related expressions of forces and moments. Therefore, they are in equilibrium with M,;,
satisfied for all the basic equations and the boundary conditions at the two simple supported ends of
cylindrical shell, so that could be regarded as a particular solution of the boundary forces and displace-
ments at the cutout of the mean shell.
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3.2. The homogeneous solution of cylindrical shells with cut-out

The general solution of homogeneous partial differential equation for a cylindrical shell subjected to any
boundary conditions but no external load acting on the surface can be obtained by solving the modified
Morley’s equation by Zhang et al. (1991):

1 0 1 0
Vit +2uis (VP45 —2wis |x=0 10
< T2 Maé)( "3 Maé)‘ 1
Unlike Donnell’s shallow shell equation, Eq. (10) has the same order of accuracy as the theory of thin shell
and is applicable up to »/+/RT > 1 (see Xue et al., 1991). Here,
2

4p
X = u,,—i—lﬁ (11)

where u, denotes the normal displacement; ¢ is Airy’s stress function and

2 2 2 2
G B 0

4 =[12(1 - ))"PR/T, V*=
=2 =vITRIT, YV =t 5 "5 T ven T 2o

Considering symmetry with respect to f = 0 and the antisymmetry with respect to = n/2, the solution of
Eq. (12) is as follows:

Z Z CoFin(a) sin(mp), (m =2k +1) (13)

k=0 n=
where

F/m(—1)k<1—15mo)[mn(\/_uoc)wmn(\/_ua)} W), (k=0,1...; n=1,2..)) (14)

NS}

0, m#n

LT k=01 n=1,2.) (15a,b)

Cn = Cnl + iCn27 5mn = {

In Eq. (14) J, and H, are nth order Bessel and Hankel functions, respectively and

n= <;—iﬂ2)1/2 (16)

The components of forces, moments, displacements and rotations in the main shell are all expressed

through the partial derivatives of y with respect to o and f8, y\/) = g;gﬁ{ , as shown by Xue et al. (1995a,b).

For example, u, and ug can be expanded in Fourier series as follows:

u, = ; U(o) sinmf, wup=— ; Vi (o) cosmfs (17a,b)

where

UkocR<fkocC(lig;+mhk>/(lm2), Vi = (aRgi — Up)/m  (m=2k+1, k=1,2..))

(18a,b)

UO = /Rfo(l) dt+ u(/,o, V() = (O(Rg() — U()) (19a,b)

Po
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In Egs. (18) and (19) the functions f;, go, f+» g« and /; can be expressed in terms of y and %'/, as shown in
Xue et al. (1999) and Eqgs. (19a,b) are different from Eq. (22b) in Xue et al. (1999), where, u,, is a rigid body
displacement and supposed to be zero.

The boundary forces and displacements at the hole edge, I', are obtained by substituting the values of o,

Br:
or = \/pg cos2 0 + (sin"'(p, sin 0))*, B = sin"'[sin"' (p, sin 0) /o] (20a,b)

into Egs. (17a,b), the real part of y in Eq. (13), the expressions of rotation, y, and Kirchhoff general forces,
T,, Sy, O, M, (see Xue et al., 1991, 1995b, 1999).

3.3. Boundary forces and displacements at the cut out in main shell

Superposing the particular solution, which is in equilibrium with M, and given in Section 3.1, on the
homogeneous solution in Section 3.2 the general solution can be obtained, which satisfies all the basic
equations of cylindrical shell and any prescribed boundary conditions. The boundary general displacement
and force vectors, F and u, at I' can be decomposed in global coordinates (p, 0, z) as follows:

F = Tviv + S\'ir - Qvln = va’p + Ft)i() + Eiz (2121)

U= Uiy + uglp + updy = Uy, + ugly + i, (21b)

They are periodic functions of § with parameter p, occurring in Egs. (9a,b) and (20a,b), so can be expanded
in Fourier series of 6 and truncated after the items with either k = K(m =2K + 1) or n = 2K + 1:

K 2K+l 2 K 2K+l 2
F,= Z vl + L) sinml,  Fy = Z Z Z (Cufl + 17) cos mO (22a,b)
k=0 n=1 i=1 k=0 n=1 i=I
K 2K+1 2 . K 2K+l
F=Y 3" (Cufiy+J7) sinmb, Z > (Cufpy + £ sinmb (22¢,d)
k=0 n=1 =1 k=0 n=1 =1
K 2K+l 2 K 2K+l 2
u, = Z Z(C,,,-ufm + i) sinmb, wuy=— Z Z (Cptdl,, + 1)) cos m0) (23a,b)
k=0 n=1 i1 k=0 n=1 i1
K_ 2K+l 2 K 2K+l 2
w= Y Y (Cuthy + i) sinm0,  p, =D > (Cyutdy, + i) sinml) (23c,d)

=~
Il
o
3
I

1 i

k

Il
o

n=1 i=1

where the first items come from homogeneous solution with 4K + 2 unknowns C.i, and the second, from
particular solution. The Fourier coefficients /7, £ ... ul ... ,u" and [, f7.. ., i are definite
integral expressions, which involve complicated and several oscillatory 1ntegrands and are calculated by
Filon numerical integration (see Davis and Rabinowitz, 1984) instead of Gauss integration in order to
overcome numerical difficulty.

4. The solution for a semi-infinite long pipe with a nonplanar end subjected to a moment M,

The branch pipe of a tee-joint is considered as a semi-infinite long cylindrical shell with a curved
boundary I'. The general solution of the pipe subjected to a moment M,, consists of a particular solution
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and homogeneous solution. The following membrane theoretical solution can be adopted as a particular
solution:

A My . A N N N N
I.==25sin0, T,=Ty=M =M=M4=0 (24a,b)
nr : :

. M, . My . M, AP
iy = — 2Et1btr ¢*cos0, i = Etnbr csind, i, = — Etnbr (v + %) sin 0 (25a,b,c)
N VMV[, N be .

=—— 0, 7.=-— ¢sin 6 25d
vo Emr SO T B (25d.e)

The homogeneous solution are obtained by solving Goldenveizer equation in the coordinates (0, {) (see
Goldenveizer, 1961) as follows:
40

VA + 42 el + (8 —2%)

Oy Oy ] oty oty
+38 +2—+4 +—=0 26
octow*  oront (26)

o0° 00”00
where v is displacement function. The components of displacement are expressed through the partial
derivatives of iy as shown in Goldenveizer (1961). For closed shell i is a periodic function of 6 and can be
expanded in Fourier series as follows:

Y=>> Dugu(c)sinmb (m=2k+1, k=0,1,2...) (27)
k=0 [=1
where
2 o o 7 2y.2 /.211/4

V=gt A= B (28a,b)
Substituting Eq. (27) into Eq. (26), we get the ordinary differential equation for g;;({):

d¥g d®g d'g d’g

— _4m? =2 fo2mP (A=) + =S —AmP(m? — 1) =t (m? — 1) g = 2

T A fomt 24— 4 4] T — (o = 12 G = 1 =0 (29)

Instead of the approximate method given by Goldenveizer (1961), an exact solution is adopted in order to
improve the accuracy for m # 1 but m not necessarily large. The characteristic equation of Eq. (29) is

S® — 4mS° + [om* — 2m>(4 — V) + 423)S* — AmP(m® — 1)°S? + m*(m® — 1) =0
(m=2k+1, k=0,1,2...) (30a)
When m = 1, considering 2(1 —?) < 4);‘ Eq. (30a) is turned into
S8 —48° +45/5* =0 (30b)

Eq. (30) is a quartic algebraic equation with real coefficients for s*> and so generally has double conjugate
roots. Therefore, the roots of Eq. (30a) should be expressed as follows:

Si1256 = Fam Fibyi, S3478 = Fam Fibu (31)

where the method of solving a,,1, b,.1, a,» and b,,; is referred to Wang and Guo (2000). Specially, when
m=1:au, by =0, ay = (/“Lf + 1)1/2, by = (itz - 1)1/2. Due to the boundary conditions when ¢ — oo, the
four items of the solutions of the eighth order partial differential equation (26) vanish, so that only 4k

functions gy;(¢) (I = 1,2,3,4) remain in the Fourier series (27) as follows:
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1, m=1 _Jg, m=1
) = { Ve siniine), mote 0= { oo, o1 (32a,0)

(<) = e * sm(\//l2 ), m=1

)

e 5 gin(b,,¢), m> 1
—cy/72+1 ( )2 -1 ) =1
e cos ) , =
Zna(c) = SV " (32¢,d)
e~° cos(bmg), m > 1

The homogeneous solutions of boundary displacements, rotations, forces and moments at the inter-
secting curve, I', are expressed in terms of W"”(C r,0) (see Xue et al., 1999, 2000) where (;(0) is the
expression for I' in coordinates (g, 0):

= (1= p3sin®0)'*/py = <r(po, 0) (33)
Superposing the homogeneous solution, truncated after the items £ = K, on a particular solution given
in Egs. (24) and (25), and substituting Eq. (33) the boundar?/ dlsplacement Vector u() i+ u i+

()l = up +u, )19 +u i and force vector, F" i, *F +F iy +F i,, rotation

) and moment M are obtained. Obviously, they are all perlodlc functlons of 0 w1th the parameter p, and

(4K +4) unknowns Dy (m=2k+1,k=0,1,2...,1=1,2,3,4), and can be re-expanded in Fourier series
of 0 as follows:

- i i i ( kjl +f/< ) sin m0), Fo(t) =- i i i (Dﬂﬁffl)g —t—fk('w) cosml (34a,b)

k=0 j=0 I=1 k=0 j=0 =

(=]

K K 4 K K 4
FO=3"%"% (D,-;f,ﬁ}}z + f,f’”) sinm0, FO =355 "Dufl" sinmo (34c,d)

k=0 j=0 [=1 k=0 j=0 [=1

K K 4 K K 4
=30 S5 (s, = =333 (Dl il Yoosmo 35y

K K 4 K K 4
=33 (Do + ) sinm0, 50 =330 (Dl 4+ i) sinmo (35¢.d)

k=0 j=0 I=1 k=0 j=0 I=1

where the first items come from homogeneous solutions shown in Eq. (27) and the second, from particular
solutions shown in Egs. (24) and (25).

5. The continuity conditions at the intersecting curve

The above mentioned (4K + 2) unknowns C,; in the general solutions for main shells and (4K + 4)
unknowns Dy in the general solutions for branch pipes are obtained from the continuity conditions at the
intersecting curve, I, as follows:

F,=—F" F=-F" FE=-F9 M,=M" (36a,b,c,d)

p

u, = ul o uy = uy, u, = ugt), p, = —yE,t) (37a,b,c,d)
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Substituting Egs. (22) and (23) into the left sides of Egs. (36) and (37), and Egs. (34) and (35) into the right
sides, respectively, (8K + 8) continuity conditions for each harmonic of the Fourier series are given.
However, some of the continuity conditions of the forces and moments, Eqgs. ((36a)—(d)), are automatically
satisfied due to the tee-joint in equilibrium in total, i.e., F, = F, = F. = M, = M, = 0 and M, = M,;. Because
the symmetry about 8 = 0 and the antisymmetry with respect to § = n/2 have been applied to the above
mentioned Fourier series, only two equilibrant conditions remain as follows:

F, = ]{[F,) sin @ — Fycos(0)]dsy =0 (38a)
-

My = j{[RFZpO sin 0 — M, cos(iy,i,)]dsr (38b)
r

Therefore, only two of the continuity conditions of general forces ((36a)-(d)) when m =1 (k=0) are
independent so that the first harmonic (k =0) of Eq. (36b,d) can be omitted. Then there are (8K + 6)
independent equations for solving C,;, (n =1,2...2K+ 1;i=1,2)and D;; (j=1,2...K; [ =1,2,3,4).

50 10
45 ‘ —— k. (Theoretical) 5 ‘W \ pr e,
o N N oo K, (Theoretical) o — gy thQ‘/P Mmﬁgﬁa
sk (ByFEM) LI
35 : &k, (By FEM) -5 En,AA
i ok (Tested) 0 4 14
* ; o k,(Tesed) x 5
25 i 15 :
< 20 s 20
‘:3 0
15 25 A —— k, (Theoretical)
0 % 30 I I k, (Theoretical)
,z 4 Kk (ByFEM)
5 2 % -35 &k, (By FEM)
0-F—— — - xo g Oz &g, 40 : * folTesed
(o] e W e ST 0k, (Tested)
5 o5 45 : :
100 80 -60 -40 20 0 20 40 60 80 100 100 -80 60 -40 -20 O 20 40 60 80 100
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35
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ol T inside (Theoretical) P
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254 e outsideof nozzle (Tested) —Nozzl e
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A
20
A
2 15 v s
X 4 & A
10 / 4‘// f ‘\Nk
{Kng L5 f LA
5 .% = Q Iina/;
0 et
-0 0 10 20 30 40 50 60 70 8 90 100
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Fig. 4. (a) Distribution of k along the gauge line 0 = 90° on the outer surface of Model ORNL-1; (b) distribution of & along the gauge
line 6 = 90° on the inner surface of Model ORNL-1; (c) variation of maximum principal stress ratios around the junction on the nozzle.
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Fig. 5. Distribution of k along the line & = 90° on the outer and inner surfaces of the model with parameters d/D = 0.8, D/T = 100,
t/T =0.8.

6. Verification of the present theoretical solution
6.1. Comparison with the test and the numerical results for model ORNL-1 (d/D =1t/T = 0.5, D/T = 100)

The dimensionless normal stresses &, and tangential stresses k, obtained by the present theoretical
solution, by test given by Corum et al. (1974) and by 3-D finite element method (the calculated FEM model
by software ANSYS has 206,353 nodes and four layers of 20-nodal elements through the thickness in close
vicinity to the intersection) are shown in Fig. 4(a,b,c); where, k, = a,/00, ks = 6,/00, kmax = 0|7/00 and
6o = 4M,;,/nd*t. Where, the subscript ‘v’ and ‘¢* are defined by Xue et al. (2000) and the same as Corum
et al. (1974). The comparison shows that the results obtained by the three different methods are in very
good agreement. Besides, Fig. 4(a,b,c) show that the stress concentration in nozzle is more significant than
that in vessel when the branch pipe is relatively thinner than the main shell.

6.2. Comparison with the numerical results by 3-D FEM for a model with parameters d/D =t/T = 0.8,
D/T =100

A 3-D finite element model with parameters d/D =t/T = 0.8 and D/T = 100 (i = d/(DT)"* = 8) is
calculated by software ANSYS in order to verify the applicable range of parameters for the presented
theoretical solution. The model has 41,450 20-nodal elements and 622,722 freedom degrees. The results
obtained by the two methods are in good agreement as shown in Fig. 5(a) and (b).

7. Comparison of resultant forces and bending moments with WRC Bulletin 297

The methods shown in WRC Bulletin 297 based on analytical solution given by Steele and Steele (1983)
are currently used in pressure vessel industry within the limits of d/D < 0.5 and 4 < 5. Figs. 6 and 7 show
that the results obtained by the presented method are in agreement with those given by WRC Bulletin 297
when d/D is small. In Fig. 6 M,, M,, N, and N, are the maximum values in the main shells.
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8. Conclusion

A thin shell theoretical solution of two normally intersecting cylindrical shells subjected to out-of plane
branch pipe moment is presented. The results by the present method are in very good agreement with those
obtained by test and by FEM. The analytical method can be applicable up to d/D<0.8 and
. =d/(DT )1/ * < 8. The present analytical results are in good agreement with WRC Bulletin 297 when d/D
is small.
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