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Abstract

In this paper a theoretical solution for two normally intersecting cylindrical shells subjected to transverse moment on

the branch pipe is presented, which based on thin shell theory. The accurate shell equations, boundary conditions and

calculating methods are adopted so that the solution presented can be applicable up to d=D6 0:8 and

k ¼ d=ðDT Þ1=26 8. The presented results are in very good agreement with experimental and numerical results for
ORNL-1 Model. They are also in agreement with the results obtained by WRC Bulletin 297 when d=D is small.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Two intersecting cylindrical shells subjected to internal pressure and external moments are of common

occurrence in pressure vessel and piping industry. The highest stress intensity often occurs in the vicinity of

junction, which is a complicated space curve when the diameter ratio, d=D, of the branch pipe relative to the
main shell increases. This topic has attracted many researchers’ attention due to its importance since 1960s

(see Reidelbach, 1961; Eringen et al., 1965, 1969; Eringen and Suhubi, 1965; Van Dyke, 1965, 1967; Qian

et al., 1965; Yamamoto et al., 1969; Hansberry and Jones, 1969; Lekerkerker, 1972; Steele and Steele, 1983).

In order to evaluate the significant local stresses in cylindrical shells due to external moments on branch

pipes, a thin shell theoretical solution were presented by Bijlaard (1954, 1955a,b). The mathematical model

adopted by Bijlaard is a cylindrical shell without branch pipe subjected to a local loading (force or moment)

in a square region and his solutions are applied by Wichman et al. (1965) to WRC Bulletin No. 107, which

is used by design analysts since 1965. Steele and Steele (1983) and Khathlan (1986) presented an approx-
imate analytical solution of two normally intersecting cylindrical shells based on shallow shell theory. The

design method and tabular data obtained by Steele’s program FAST2 were presented for designers in WRC
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Bulletin No. 297 by Mershon et al. (1984) as a supplement to WRC Bulletin No. 107. WRC Bulletin 297

provides data for the diameter ratio q0 ¼ d=D up to approximately 0.5 and includes the effects of nozzle
thickness. Moffat (1985), Moffat et al. (1991) obtained numerical solutions and developed design methods

based on 3-D FEM and experimental results. The limitations of application of the design method in BS 806
are 56D=T 6 70 and d=D6 t=T 6 1, where t and T denote the thicknesses of nozzle and cylinder,

respectively. Although researchers and designers have expanded the great efforts to overcome the significant

difficulties on mathematics and analysis method, the design procedures for branch junctions are still in need

of improvement.

The authors of the present paper, Xue et al. (1991, 1995a,b, 1996, 1999, 2000) and Deng et al. (1991)

developed a thin shell theoretical method for two orthogonally intersecting cylindrical shells with large d=D
ratio. The intersecting shells subjected to internal pressure and run pipe moments were investigated by Xue

et al. (1995b, 1996) and Xue et al. (1999, 2000), respectively. Comparing with analytical solutions by
previous researchers, the four aspects in the present theoretical solution are improved as follows: (1) the

modified Morley’s equation, which is applicable to the cases k ¼ d=ðDT Þ1=2 � 1 with the accuracy order

OðT=RÞ, is adopted instead of Donnell’s shallow shell equation; (2) five coordinate systems in three spaces
(two-dimensional cylindrical surfaces of main shell and branch pipe and three-dimensional space) and the

accurate expressions of the intersecting curve are used instead of approximate expressions, which bring

about significant error when d=D > 0:3; (3) the accurate continuity conditions for forces, moments, dis-
placements and rotations at the intersection curve of the two cylinders are adopted instead of approximate

continuity conditions; (4) the great mathematical difficulties coursed by the accurate but very complicated
formulations are overcome. As a new progress of theoretical solution and design criteria research developed

by the authors, the stress analysis based on the theory of thin shell is carried out for cylindrical shells with

normally intersecting nozzles subjected to external branch pipe moments.
2. Mathematical model

Two intersecting cylindrical shells subjected to external branch pipe moments, i.e., out-of plane moment

Mxb, in-plane moment Myb and torsion moment Mzb, and five coordinate systems, i.e., main coordinate

system, (n;u), and polar coordinates, (a; b), on developed cylindrical shell surface, (h; 1) on nozzle surface,
global Cartesian coordinates (x; y; z) and circular cylindrical coordinates (q; h; z) in 3-D space, adopted in
this paper are shown in Fig. 1, where C denote the intersecting curve. The cantilever main shell is supported
at one end with the following boundary conditions:
Tn ¼ 0; uu ¼ 0; un ¼ 0; Mn ¼ 0 at x ¼ �L ðL � RÞ ð1Þ
Each of the three load cases can be considered as the superposition of some basic categories symmetrical or

antisymmetrical about h ¼ 0 and h ¼ p=2. As an example, the loading case of out-of plane moment Mxb,

which causes the most serious stress concentration, can be considered as the superposition of the following
two categories. That is, category (a): main cylindrical shell with branch pipe simple supported at the two

ends and subjected to out-plane branch pipe moment Mxb as shown in Fig. 2(a), which is antisymmetric

about h ¼ 0 and symmetric about h ¼ p=2; and category (b): main shell subjected to torsion moments,
Mxb=2, at the two ends as shown in Fig. 2(b), which is antisymmetric about both h ¼ 0 and h ¼ p=2.
Because the solution of category (b) has been given by Xue et al. (1999, 2000), in the present paper, we pay

our attention to solve the category (a), i.e., simple supported main shell subjected to branch moment.

The thin shell theoretical solution for the main shell with cutout, C, on which moment Mxb is applied, is

obtained by superposing the particular solution on the homogeneous solution. The double Fourier series
solution of Timoshenko’s equations (1959) in the coordinates (n;/) is taken as a particular solution and the
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Fig. 1. Calculated model and five coordinate systems.
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Xue et al.’s solution (1999, 2000) in the polar coordinates (a; b), as the homogeneous solution based on the
modified Morley (1959) equation shown in Xue et al. (2000) instead of the Donnell shallow shell equation.

The displacement function solution for the nozzle with a nonplanar boundary curve, C, is obtained on the
basis of the Goldenveizer equation (1961) in the coordinates (h; f) instead of Timoshenko equation. The
boundary general forces and displacements of both main shell and branch pipe at the intersecting curve, C,
are all transformed into global coordinate system, (q; h; z), and expanded in Fourier series of h. Then the
unknown constants in general solutions of both main shell and branch pipe could be solved by the con-

tinuity conditions of general forces and displacements.
3. The theoretical solution of cylindrical shell with cut-out subjected to out-of plane branch pipe moment

The general solution of this problem is divided into the following two parts: (1) a particular solution,

which is in equilibrium with Mxb but does not satisfy the boundary conditions at the cut-out; (2) general

solution of the homogeneous equation of cylindrical shell. The sum of the two parts with some integral

constants becomes the general solution of this problem and the unknown constants could be determined by
the boundary conditions at the edge of the cut-out.
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3.1. A particular solution in equilibrium with Mxb

A thin shell theoretical solution for a simply supported cylindrical shell subjected to a vertical force

system qz distributed over a central square region in the developed surface (n;u), defined by jnj6 c=R,
juj6 c=R, is taken as a particular solution of the problem. The vertical force system in the region, qz, is
distributed linearly in u direction and uniformly in n, as shown in Fig. 3. The vertical force system, qz, is
statically equivalent to Mxb.

1

The Timoshenko equations in coordinates (n;u) for cylindrical shell subjected to arbitrary distributed
load is adopted as follows:
1 R

resulta

the she

the dia
o2

on2

�
þ 1� m

2

o2

ou2

�
un þ

1þ m
2

o2uu

onou
þ m

oun
on

¼ �R2ð1� m2Þ
ET

qn ð2aÞ
1þ m
2

o2un

onou
þ 1� m

2

o2

on2

�
þ o2

ou2

�
uu þ o

ou
ð1� a2r2Þun ¼ �R2ð1� m2Þ

ET
qu ð2bÞ
m
oun

on
þ o

ou
1

�
� a2 ð2

�
� mÞ o2

on2
þ o2

ou2

��
uu þ ð1þ a2r2r2Þun ¼

R2ð1� m2Þ
ET

qn ð2cÞ
where n ¼ x=R, a2 ¼ T 2=ð12R2Þ, r2 ¼ o2
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, E is Young’s modulus, m is Poisson’s ratio, qn, qu and qn are

the distributed loads applied on the shell.

In view of the deformation field symmetric with respect to the plane n ¼ 0 and antisymmetric with re-
spect to the plane u ¼ 0; p, Eqs. (2a–c) with simple supported boundary conditions at n ¼ 	L=R can be
solved by expanding the displacements and external load in double infinite Fourier series as follows:
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where kn ¼ ð2n�1ÞpR
2L ; n ¼ 1; 2; . . .; n0 ¼ ðxþ LÞ=R.

The vertical force system and its radial and tangential components are:
qzðn;uÞ ¼
q
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where q0 ¼ r=R, from the equivalence of qz-system to Mxb,
eference to Bijlaard (1955b) a simply supported cylindrical shell is subjected to distributed linearly radial force system, qn, whose
nts include not only moment, Mxb, but also force, Fy . Therefore, in order to raise accuracy of the solutions in the present paper
ll is subjected to vertical force system, qz, instead of radial force system, qn, because the latter may cause a significant error when
meter ratio d=D is not small.
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q ¼ Mxb
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Substituting Eqs. (3) and (4) into (2a–c), the coefficients in Fourier series (4a–c) can be solved from the

following system of linear algebraic equations:
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The particular solution for resultant forces and moments could be obtained from displacements by

means of geometric and elastic relations (see Timoshenko and Woinowsky-Krieger, 1959). The general

displacements and forces at the closed curve, C, can be expressed by substituting the values of nC, uC:
n ¼ nC ¼ q0 cos h; u ¼ uC ¼ sin�1ðq0 sin hÞ ð9a;bÞ

into Eqs. (4a–c) and related expressions of forces and moments. Therefore, they are in equilibrium withMxb,

satisfied for all the basic equations and the boundary conditions at the two simple supported ends of
cylindrical shell, so that could be regarded as a particular solution of the boundary forces and displace-

ments at the cutout of the mean shell.
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3.2. The homogeneous solution of cylindrical shells with cut-out

The general solution of homogeneous partial differential equation for a cylindrical shell subjected to any

boundary conditions but no external load acting on the surface can be obtained by solving the modified
Morley’s equation by Zhang et al. (1991):
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Unlike Donnell’s shallow shell equation, Eq. (10) has the same order of accuracy as the theory of thin shell
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Considering symmetry with respect to b ¼ 0 and the antisymmetry with respect to b ¼ p=2, the solution of
Eq. (12) is as follows:
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In Eq. (14) Jn and Hn are nth order Bessel and Hankel functions, respectively and
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The components of forces, moments, displacements and rotations in the main shell are all expressed

through the partial derivatives of v with respect to a and b, vði;jÞ ¼ oðiþjÞv
oaiobj

, as shown by Xue et al. (1995a,b).

For example, ua and ub can be expanded in Fourier series as follows:
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In Eqs. (18) and (19) the functions f0, g0, fk, gk and hk can be expressed in terms of v and vði;jÞ, as shown in

Xue et al. (1999) and Eqs. (19a,b) are different from Eq. (22b) in Xue et al. (1999), where, uu0 is a rigid body

displacement and supposed to be zero.

The boundary forces and displacements at the hole edge, C, are obtained by substituting the values of aC,
bC:
aC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 cos

2 h þ ðsin�1ðq0 sin hÞÞ2
q

; bC ¼ sin�1½sin�1ðq0 sin hÞ=aC� ð20a;bÞ
into Eqs. (17a,b), the real part of v in Eq. (13), the expressions of rotation, cm and Kirchhoff general forces,

Tm, Sm, Qm, Mm (see Xue et al., 1991, 1995b, 1999).

3.3. Boundary forces and displacements at the cut out in main shell

Superposing the particular solution, which is in equilibrium with Mxb and given in Section 3.1, on the

homogeneous solution in Section 3.2 the general solution can be obtained, which satisfies all the basic

equations of cylindrical shell and any prescribed boundary conditions. The boundary general displacement

and force vectors, F and u, at C can be decomposed in global coordinates (q; h; z) as follows:
F ¼ Tmim þ Smit � Qmin ¼ Fqiq þ Fhih þ Fziz ð21aÞ

u ¼ uaia þ ubib þ unin ¼ uqiq þ uhih þ uziz ð21bÞ
They are periodic functions of h with parameter q0 occurring in Eqs. (9a,b) and (20a,b), so can be expanded
in Fourier series of h and truncated after the items with either k ¼ Kðm ¼ 2K þ 1Þ or n ¼ 2K þ 1:
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k¼0

X2Kþ1
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where the first items come from homogeneous solution with 4K þ 2 unknowns Cni, and the second, from

particular solution. The Fourier coefficients f q
kni; f

h
kni . . . ; u

q
kni . . . ; u

m
kni and f̂ q

k ; f̂
h
k . . . ; û

q
k . . . ; û

m
k are definite

integral expressions, which involve complicated and several oscillatory integrands, and are calculated by

Filon numerical integration (see Davis and Rabinowitz, 1984) instead of Gauss integration in order to
overcome numerical difficulty.
4. The solution for a semi-infinite long pipe with a nonplanar end subjected to a moment Mxb

The branch pipe of a tee-joint is considered as a semi-infinite long cylindrical shell with a curved

boundary C. The general solution of the pipe subjected to a moment Mxb consists of a particular solution
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and homogeneous solution. The following membrane theoretical solution can be adopted as a particular

solution:
T̂1 ¼
Mxb

pr2
sin h; T̂1h ¼ T̂h ¼ M̂1 ¼ M̂h ¼ M̂1h ¼ 0 ð24a;bÞ
ûh ¼ � Mxb

2Etpr
12 cos h; û1 ¼

Mxb

Etpr
1 sin h; ûq ¼ � Mxb

Etpr
m

�
þ 12

2

�
sin h ð25a;b;cÞ
ĉh ¼ � mMxb

Etpr
cos h; ĉ1 ¼ � Mxb

Etpr
1 sin h ð25d;eÞ
The homogeneous solution are obtained by solving Goldenveizer equation in the coordinates (h; f) (see
Goldenveizer, 1961) as follows:
r8w þ 4k4t
o4w
o14

þ ð8� 2m2Þ o6w

of4oh2
þ 8 o6w

of2oh4
þ 2 o

6w

oh6
þ 4 o4w

of2oh2
þ o4w

oh4
¼ 0 ð26Þ
where w is displacement function. The components of displacement are expressed through the partial

derivatives of w as shown in Goldenveizer (1961). For closed shell w is a periodic function of h and can be
expanded in Fourier series as follows:
w ¼
X1
k¼0

X8
l¼1

Dklgklð1Þ sinmh ðm ¼ 2k þ 1; k ¼ 0; 1; 2 . . .Þ ð27Þ
where
r2 ¼ o2

oh2
þ o2

o12
; kt ¼ ½3ð1� m2Þr2=t2�1=4 ð28a;bÞ
Substituting Eq. (27) into Eq. (26), we get the ordinary differential equation for gklðfÞ:
d8g
d18

� 4m2 d
6g
d16

þ ½6m4 � 2m2ð4� m2Þ þ 4k4t �
d4g
d14

� 4m2ðm2 � 1Þ2 d
2g
d12

þ m4ðm2 � 1Þ2g ¼ 0 ð29Þ
Instead of the approximate method given by Goldenveizer (1961), an exact solution is adopted in order to

improve the accuracy for m 6¼ 1 but m not necessarily large. The characteristic equation of Eq. (29) is
S8 � 4m2S6 þ ½6m4 � 2m2ð4� m2Þ þ 4k4t �S4 � 4m2ðm2 � 1Þ
2S2 þ m4ðm2 � 1Þ2 ¼ 0

ðm ¼ 2k þ 1; k ¼ 0; 1; 2 . . .Þ ð30aÞ
When m ¼ 1, considering 2ð1� m2Þ � 4k4t Eq. (30a) is turned into
S8 � 4S6 þ 4k4t S4 ¼ 0 ð30bÞ
Eq. (30) is a quartic algebraic equation with real coefficients for s2 and so generally has double conjugate
roots. Therefore, the roots of Eq. (30a) should be expressed as follows:
S1;2;5;6 ¼ �am1 � ibm1; S3;4;7;8 ¼ �am2 � ibm2 ð31Þ
where the method of solving am1, bm1, am2 and bm2 is referred to Wang and Guo (2000). Specially, when
m ¼ 1: am1, bm1 ¼ 0, am2 ¼ ðk2t þ 1Þ

1=2
, bm2 ¼ ðk2t � 1Þ

1=2
. Due to the boundary conditions when 1 ! 1, the

four items of the solutions of the eighth order partial differential equation (26) vanish, so that only 4k
functions gklð1Þ (l ¼ 1; 2; 3; 4) remain in the Fourier series (27) as follows:
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k2t � 1

q �
; m ¼ 1

e�am21 sinðbm21Þ; m > 1

8<
: ;

gm4ð1Þ ¼
e�1

ffiffiffiffiffiffiffi
k2t þ1

p
cos

�
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2t � 1

q �
; m ¼ 1

e�am21 cosðbm21Þ; m > 1

8<
: ð32c;dÞ
The homogeneous solutions of boundary displacements, rotations, forces and moments at the inter-

secting curve, C, are expressed in terms of wði;jÞðfC; hÞ (see Xue et al., 1999, 2000) where fCðhÞ is the
expression for C in coordinates (1; h):
1C ¼ ð1� q20 sin
2 hÞ1=2=q0 ¼ 1Cðq0; hÞ ð33Þ
Superposing the homogeneous solution, truncated after the items k ¼ K, on a particular solution given
in Eqs. (24) and (25), and substituting Eq. (33), the boundary displacement vector, uðtÞ ¼ uðtÞm im þ uðtÞt itþ
uðtÞn in ¼ uðtÞq iq þ uðtÞh ih þ uðtÞz iz and force vector, F

ðtÞ ¼ F ðtÞ
m im þ F ðtÞ

t it þ F ðtÞ
n in ¼ F ðtÞ

q iq þ F ðtÞ
h ih þ F ðtÞ

z iz, rotation
cðtÞm and moment M

ðtÞ
m are obtained. Obviously, they are all periodic functions of h with the parameter q0 and

ð4K þ 4Þ unknowns Dkl ðm ¼ 2k þ 1; k ¼ 0; 1; 2 . . . ; l ¼ 1; 2; 3; 4Þ, and can be re-expanded in Fourier series
of h as follows:
F ðtÞ
q ¼

XK
k¼0

XK
j¼0

X4
l¼1

�
Djlf

ðtÞq
kjl þ f̂ ðtÞq

k

�
sinmh; F ðtÞ

h ¼ �
XK
k¼0

XK
j¼0

X4
l¼1

�
Djlf

ðtÞh
kjl þ f̂ ðtÞh

k

�
cosmh ð34a;bÞ

F ðtÞ
z ¼

XK
k¼0

XK
j¼0

X4
l¼1

�
Djlf

ðtÞz
kjl þ f̂ ðtÞz

k

�
sinmh; F ðtÞ

m ¼
XK
k¼0

XK
j¼0

X4
l¼1

Djlf
ðtÞm
kjl sinmh ð34c;dÞ

uðtÞq ¼
XK
k¼0

XK
j¼0

X4
l¼1

�
Djlu

ðtÞq
kjl þ ûðtÞqk

�
sinmh; uðtÞh ¼ �

XK
k¼0

XK
j¼0

X4
l¼1

�
Djlu

ðtÞh
kjl þ ûðtÞhk

�
cosmh ð35a;bÞ

uðtÞz ¼
XK
k¼0

XK
j¼0

X4
l¼1

�
Djlu

ðtÞz
kjl þ ûðtÞzk

�
sinmh; cðtÞm ¼

XK
k¼0

XK
j¼0

X4
l¼1

�
Djlu

ðtÞm
kjl þ ûðtÞmk

�
sinmh ð35c;dÞ
where the first items come from homogeneous solutions shown in Eq. (27) and the second, from particular

solutions shown in Eqs. (24) and (25).
5. The continuity conditions at the intersecting curve

The above mentioned ð4K þ 2Þ unknowns Cni in the general solutions for main shells and ð4K þ 4Þ
unknowns Djl in the general solutions for branch pipes are obtained from the continuity conditions at the
intersecting curve, C, as follows:
Fq ¼ �F ðtÞ
q ; Fh ¼ �F ðtÞ

h ; Fz ¼ �F ðtÞ
z ; Mm ¼ M ðtÞ

m ð36a;b;c;dÞ

uq ¼ uðtÞq ; uh ¼ uðtÞh ; uz ¼ uðtÞz ; cm ¼ �cðtÞm ð37a;b;c;dÞ
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Substituting Eqs. (22) and (23) into the left sides of Eqs. (36) and (37), and Eqs. (34) and (35) into the right

sides, respectively, ð8K þ 8Þ continuity conditions for each harmonic of the Fourier series are given.
However, some of the continuity conditions of the forces and moments, Eqs. ((36a)–(d)), are automatically

satisfied due to the tee-joint in equilibrium in total, i.e., Fx ¼ Fy ¼ Fz ¼ My ¼ Mz ¼ 0 andMx ¼ Mxb. Because
the symmetry about h ¼ 0 and the antisymmetry with respect to h ¼ p=2 have been applied to the above
mentioned Fourier series, only two equilibrant conditions remain as follows:
Fig. 4.

line h ¼
Fy ¼
I

C
½Fq sin h � Fh cosðhÞ�dsC ¼ 0 ð38aÞ
Mxb ¼
I

C
½RFzq0 sin h �Mm cosðit; ixÞ�dsC ð38bÞ
Therefore, only two of the continuity conditions of general forces ((36a)–(d)) when m ¼ 1 ðk ¼ 0Þ are
independent so that the first harmonic ðk ¼ 0Þ of Eq. (36b,d) can be omitted. Then there are ð8K þ 6Þ
independent equations for solving Cni (n ¼ 1; 2 . . . 2K þ 1; i ¼ 1; 2) and Djl (j ¼ 1; 2 . . .K; l ¼ 1; 2; 3; 4).
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6. Verification of the present theoretical solution

6.1. Comparison with the test and the numerical results for model ORNL-1 (d=D ¼ t=T ¼ 0:5, D=T ¼ 100)

The dimensionless normal stresses km and tangential stresses kt obtained by the present theoretical
solution, by test given by Corum et al. (1974) and by 3-D finite element method (the calculated FEM model

by software ANSYS has 206,353 nodes and four layers of 20-nodal elements through the thickness in close

vicinity to the intersection) are shown in Fig. 4(a,b,c); where, km ¼ rm=r0, kt ¼ rt=r0, kmax ¼ rjC=r0 and
r0 ¼ 4Mxb=pd2t. Where, the subscript ‘m’ and ‘t’ are defined by Xue et al. (2000) and the same as Corum
et al. (1974). The comparison shows that the results obtained by the three different methods are in very
good agreement. Besides, Fig. 4(a,b,c) show that the stress concentration in nozzle is more significant than

that in vessel when the branch pipe is relatively thinner than the main shell.
6.2. Comparison with the numerical results by 3-D FEM for a model with parameters d=D ¼ t=T ¼ 0:8,
D=T ¼ 100

A 3-D finite element model with parameters d=D ¼ t=T ¼ 0:8 and D=T ¼ 100 (k ¼ d=ðDT Þ1=2 ¼ 8) is
calculated by software ANSYS in order to verify the applicable range of parameters for the presented

theoretical solution. The model has 41,450 20-nodal elements and 622,722 freedom degrees. The results

obtained by the two methods are in good agreement as shown in Fig. 5(a) and (b).
7. Comparison of resultant forces and bending moments with WRC Bulletin 297

The methods shown in WRC Bulletin 297 based on analytical solution given by Steele and Steele (1983)

are currently used in pressure vessel industry within the limits of d=D6 0:5 and k < 5. Figs. 6 and 7 show
that the results obtained by the presented method are in agreement with those given by WRC Bulletin 297
when d=D is small. In Fig. 6 Mr, Mh, Nr and Nh are the maximum values in the main shells.
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8. Conclusion

A thin shell theoretical solution of two normally intersecting cylindrical shells subjected to out-of plane

branch pipe moment is presented. The results by the present method are in very good agreement with those
obtained by test and by FEM. The analytical method can be applicable up to d=D6 0:8 and
k ¼ d=ðDT Þ1=26 8. The present analytical results are in good agreement with WRC Bulletin 297 when d=D
is small.
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